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ABSTRACT

The problem of localising a point source of gamma radiation is considered. A
simplified analytical approach based on the inverse distance square law as well
as several probabilistic approaches are described. The problem is studied using
the Cramer-Rao bound (CRB) analysis, which quantifies the accuracy with
which it is possible to localise the source and estimate its activity. Simulated
and real radiological survey data are used to investigate the performance of
the algorithms.
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Radiological Source Localisation

Executive Summary

The increasing threat of chemical, biological and radiological (CBR) attacks has re-
sulted in a significant interest in research on countering such attacks. Our research focuses
on countering radiological attacks, which may, for example, be carried out using radiolog-
ical dispersion devices or dirty bombs. The ability to rapidly localise a radiological source
can assist emergency responders to disable, isolate or safely remove such a device.

This report describes some preliminary work we have carried out in the area of radi-
ological source modelling and localisation. This work concerned localisation of a single
fixed gamma radiation source of unknown activity level. The accuracy with which the
source location and the activity could be estimated was studied using the Cramer Rao
bound analysis. A simple deterministic analytical approach as well as several probabilistic
estimation techniques were investigated using simulated and real measurement data.

The inverse square law-based deterministic solution developed in this work uses radi-
ation measurements collected at four arbitrary points to estimate the source position and
activity. This algorithm was able to provide reasonable source estimates based on real
data collected using the Low Cost Advanced Airborne Radiological Survey (LCAARS)
system developed by DSTO.

The maximum likelihood estimator and a nonlinear least squares estimator yielded
quite accurate estimates. While the maximum likelihood is an asymptotically efficient
estimator, it is a batch algorithm and is unattractive for operational use. An inexact
recursive least squares algorithm was developed and it produced good estimates when
applied to real data. Unscented Kalman filter (UKF) and extended Kalman filter (EKF)
algorithms were also investigated. The UKF approach performed well but the EKF was
divergent and could not return acceptable source estimates.

The preliminary investigations described in this report have provided useful insights
to the issues associated with radiological source estimation. Future work will investigate
more robust estimation techniques and also consider multiple possibly moving sources,
localisation in the presence of obstructions and observer motion optimisation.
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1 Introduction

Enhancing the chemical, biological and radiological (CBR) situational awareness of the
battlefield is an important goal of DSTO research. Accurate assessment and modelling of
CBR hazards are essential for the purposes of safely locating and removing or isolating
them. Hazard modelling also makes it possible to predict the impact of CBR hazards on
surrounding geographical areas and populations. Atmospheric dispersion modelling tools,
such as Hazard Prediction and Assessment Capability (HPAC), together with accurate
weather data provide a powerful and convenient way to determine how a release of a
known CBR source would disperse and what kind of hazardous exposure it would cause in
an area. This forward modelling capability provided by HPAC and similar tools is useful
in assessing who is vulnerable to the effects of a known CBR source that exists at a known
location. It would generally be expected that a CBR source is not known. Sometimes
approximate prior knowledge about the CBR source and its location may be available, for
example through intelligence information. The exact nature of the source and its location
need to be ascertained by using sensor measurements and appropriate source estimation
algorithms. A previous DSTO report[1] outlined DSTO’s planned work towards CBR
source term estimation, hazard modelling and data fusion.

Because CB detection technologies are relatively immature and also because other
nations in the TTCP have devoted limited attention to the radiological problem [1], it has
been decided to focus DSTO’s initial work in this area to radiological source estimation.
Another reason for choosing to initially work with the radiological source problem is the
availability of the DSTO-developed Low Cost Advanced Radiological Survey (LCAARS)
system for data collection to support testing and validation of algorithms. DSTO intends
to undertake work in CB hazard modelling and data fusion in future. This report describes
our initial work in radiological hazard modelling and source term estimation.

The ultimate goal of radiological source estimation research is to be able to track a
dispersing cloud of radioactive particles and predict the integrated radiation dose emitted
in all directions from the cloud. Before we can solve this rather complex problem, it
is essential to gain a better understanding of the relevant issues by first tackling the
relatively simpler problem of estimating a single radiological point source. Once this
initial problem is tackled, future research will consider the problem of estimating multiple
point gamma sources. The overview of research plan discussed in Section 4.2 of [1] suggests
to consider the problem of locating a point gamma radiation source as a first enhancement
of LCAARS, and to test these algorithms in a field trial.

2 Description of the problem

Radiation is energy that originates in atomic or nuclear processes and travels through
space and materials. Radiation may include fast electrons including beta particles, heavy
charged particles such as alpha particles, electromagnetic radiation including X-rays and
gamma rays, and neutron radiation [2]. Alpha radiation travels only short distances
through air and is unable to penetrate clothing or human skin. Alpha-emitting material
may, however, be hazardous if they enter the body through inhalation or other means.
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Beta radiation has higher penetration than alpha radiation and may moderately penetrate
human skin. Internal deposition of beta-emitting material can be harmful. Devices such
as thin-window Geiger-Müller probes can detect the presence of alpha or beta sources.
Because of limited distances travelled by alpha and beta radiation, stand-off detection of
these sources is difficult. Gamma rays, in contrast, are highly penetrating and may be
detected at large distances from the source.

Developing a capability to accurately pinpoint the location of an unknown source
of gamma radiation, (eg. a dirty bomb) can help rapid identification and removal of
such threats. As mentioned above, currently, radiation survey data collected with the
LCAARS system has to be loaded into a mapping software and a two-dimensional intensity
plot produced to visually identify the area with the highest intensity as the putative
source location. If the source lies outside the surveyed area, then its position cannot be
determined using this approach. The gradient of the data may provide an indication of
the direction of the source location, which may then be used as a cue for a fresh survey.
The goal of the current work is to investigate approaches to improve the accuracy and the
efficiency of locating gamma radiation sources, preferably in real time.

Consider a single radiological point source located at (x0, y0) in the two-dimensional
Cartesian coordinate system (Fig. 1). For simplicity, the elevation of the source is not
considered. A radiation survey instrument is used to collect measurements of radiation
zk at Cartesian coordinates (xk, yk), where k = 1, . . . , N and N is the total number of
measurements. It is assumed that {(xk, yk); k = 1, . . . , N} are known (measured using a
GPS receiver for example). The goal is to estimate the location and the strength of the
unknown source based on these measurements.

.

A point source of 
radioactivity I 

positioned at (x  , y  )0 0
r
i

(x  , y  )
i i

Measurement points

Figure 1: Geometry of the radiological point source localisation problem

The dose rate D (measured in units of µSv/h) at a distance r (m) from a point gamma
source can be written as[3]:

D =
ME

6r2
(1)

where M is the source activity in MBq and E is the gamma energy per disintegration in
MeV.

We can rewrite Equation (1) in the following familiar form of the inverse squared
distance law:

2
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D =
I

r2
(2)

where
I =

ME

6
. (3)

Here the single parameter I is used to characterise the product of the radioactivity
of the source and the gamma energy per disintegration. From Equation (2), I can also
be interpreted as the dose rate measured at a distance of 1 m from the source. In some
cases the gamma energy E may be known, for example through gamma spectroscopy and,
therefore, an estimate of I can be used to compute the source activity M . Therefore, for
simplicity, in this report we may refer to I as activity.

When the LCAARS system is used in conjunction with the standard gamma probe, it
measures the dose rate and records in units of mSv/h. Therefore the estimated activity
will be in GBq.

If the LCAARS system is used with the Micro-R probe, the survey data will be count
rates expressed as counts per minute (CPM). In this case, Equation(1) must be modified
to incorporate the energy response (CPM/µSv/h) of the probe. Therefore,

Count Rate =
ME

6r2
× Energy Response (4)

=
I

r2
(5)

where
I =

ME

6
× Energy Response (6)

From Equation (5) we can interpret I as the count rate measured at a distance of 1 m
away from the source.

The Micro-R probe has an energy response of 12200 CPM/µSv/h for 0.662 MeV gamma
radiation of 137Cs and 6700 CPM/µSv/h for 1.25 MeV average gamma energy of 60Co
source [4]. Assuming that the energy of the measured radiation is known, the source
radiative activity M can be computed using Equation (6) and the estimated value of I.
Therefore, we can represent the unknown point gamma radiation source by defining a
parameter vector as follows:

x =
[
x0 y0 I

]T (7)

where T denotes the matrix transpose.

Our goal is to estimate vector x using measurements {zk; k = 1, . . . , N} collected at
coordinates {(xk, yk); k = 1, . . . , N}.

3 Deterministic solutions

In simple terms, the point source estimation problem can be considered as estimating
the three unknown parameters (x0, y0, I). In principle, only three equations in terms of

3
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these three unknowns are necessary to obtain an exact solution. Because the dose rate
or the count rate zk measured at any location (xk, yk) depends on the three unknown pa-
rameters through the inverse square law, measurements obtained at three different points
are all that is required to estimate the source location and strength. Because the solution
of these equations involves several square root operations, it produces several spurious
solutions in addition to the true estimate, making this solution difficult to use. By includ-
ing the measurement from a fourth point, these square root operations and, hence, the
spurious solutions can be avoided.

Let us consider measurements {zk, k = 1, 2, 3, 4} collected at four arbitrary points
(xk, yk). If we disregard noise and background radiation, these measurements can be
expressed as:

zk(x) = I/r2
k, k = 1, 2, 3, 4 (8)

where
rk =

√
(xk − x0)2 + (yk − y0)2 (9)

is the distance from the source (x0, y0) to the kth measurement point (xk, yk).

As shown in Appendix A, Equation (8)can be solved analytically for x0, y0 and I,
which gives:

x0 =
b1c2 − c1b2

a1b2 − b1a2
(10)

y0 =
a1c2 − c1a2

b1a2 − a1b2
and (11)

I = z1

[
(x1 − x0)2 + (y1 − y0)2

]
(12)

where

K1 =

(
1
z1
− 1

z2

)
(

1
z1
− 1

z3

)

K2 =

(
1
z1
− 1

z2

)
(

1
z1
− 1

z4

)

L1 = (x2
1 − x2

2) + (y2
1 − y2

2)
L2 = (x2

1 − x2
3) + (y2

1 − y2
3)

L3 = (x2
1 − x2

4) + (y2
1 − y2

4)
a1 = 2K1(x1 − x3)− 2(x1 − x2)
b1 = 2K1(y1 − y3)− 2(y1 − y2)
c1 = L1 −K1L2

a2 = 2K2(x1 − x4)− 2(x1 − x2)
b2 = 2K2(y1 − y4)− 2(y1 − y2)
c2 = L1 −K2L3.

Since the radioactive decay is a stochastic process, the inverse distance square law is
applicable to the measurements only in an average sense. Therefore, the count rate or

4
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the dose rate measurements zk should truly be the averages taken over a sufficiently large
number of measurements collected at each measurement point.

The above analytical solution based on four measurements is quite simple and may be
useful as a tool to rapidly obtain at least a crude estimate of a radiological point source.
There are, however, many limitations in the applicability. The solution assumes a single
point source in open space and, therefore, not applicable to multiple source situations or
when there are obstacles between the source and the measurement points. For simplicity,
the background radiation level was ignored in the derivation discussed above. This is not
a major limitation because it is possible in real measurements to subtract the average
background from all measurements, provided the background level is relatively constant.
The results obtained by applying the four point estimation algorithm to real measurement
data is discussed in Subsection 8.2.

4 Statistical data modelling

Accurate statistical modelling of data is essential to the development of effective es-
timation algorithms. A set of controlled experiments was carried out in June 2006 to
collect data to characterise the radiation survey measurements. These experiments were
conducted in the radiation laboratory at the DSTO Fishermans Bend site using the low
cost advanced airborne radiological survey (LCAARS) system.

The CBRN Defence Centre at DSTO prototyped this survey system using an AN/PDR-
77 radiation survey meter equipped with an RS232 interface module, a gamma radiation
detector, a GPS receiver, and survey software. Although the system was originally de-
signed for airborne survey, as the name suggests, the DSTO-developed prototype was
primarily developed for ground vehicle based survey.

Two different radiation detectors; a standard gamma probe and a Micro-R probe were
used. With the standard gamma probe, which is a Geiger-Müller tube, the AN/PDR-77 is
capable of measuring gamma radiation over a wide range of dose rates without saturating
at high levels but the sensitivity is poor at low dose rates close to background and at
low gamma energies. Dose rate data measured with this probe were recorded in milligray
per hour (mGy/h). The Micro-R probe uses a 2.54 cm (1 inch) diameter and 3.81 cm
(1.5 inch) long NaI scintillation crystal coupled to a 2.54 cm diameter photomultiplier
tube operated at 700 volts. It has greater sensitivity to low energy and low dose rate
radiation. Measurements with this probe were recorded as count rates in counts per
minute (CPM).

Data were collected with each sensor positioned 1 m, 1.5 m, 2 m, 3 m and 4 m away
from a 1.647 GBq 60Co radiation source which was enclosed within its transport container
to prevent excessive exposure to the experimenter. Background data in the absence of any
radiation sources were also collected with each sensor. The data collection software was
set up to acquire data for a period of one hour for each different configuration. As the
system collects one data point per approximately every two seconds, approximately 1840
measurements were collected in each configuration. The sensors were stationary during
data acquisition.

5
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4.1 Dose rate data

The raw dose rate data measured using the gamma probe (in mSv/h) at different dis-
tances from the source as well as the data collected in the absence of a source are shown
in Figure 2. The variance of these data can be seen to increase with the mean signal
level. Figure 3(a) shows the raw data (zraw) collected 3 m away from the radiation source,
which show that the measurements fall into a set of discrete levels including 0, 0.00021,
0.00042, 0.00063 mSv/h and other integer multiples of 0.00021. A few measurements
are slightly outside these levels having values such as 0.00041 or 0.00062, which may be
due to electronic noise in the sensor. All other data sets also displayed similar discrete-
ness. Figure 3(b) shows the normalised data (znorm) that were obtained by applying the
transformation:

znorm = round
( zraw

0.00021

)
.

Figure 4 shows the normalised histograms of each data set. The mean value µ and the
standard deviation σ for each of the data sets are listed in Table 1. From the third and
fourth columns of the table we notice that σ ≈ √

µ, as expected for a Poisson distribution.
If z = 0, 1, 2, . . . is the dose rate count, then the Poisson pmf is given by P(z;µ) =
e−µµz/z!. Since both the mean and the variance of a Poisson distribution are equal
(to µ), for smaller distances between the source and the probe, the probe readings are
characterised by higher magnitude but also by higher uncertainty. A Poisson distribution
with large µ is approximately Gaussian with mean and variance equal to µ. Observe
from Figure 4 that the Gaussian fit is fairly accurate for all cases except for background
radiation.
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Figure 2: Raw dose rate data measured with the gamma-beta probe
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Figure 3: Discreteness of dose rate data measured with the gamma-beta probe
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If we assume that the mean values of the data measured at different distances from
the source to follow the inverse square law, then we can express these mean values as a
function of distance as follows:

µ =
I

d2
+ µ0 (13)

where µ0 is the value of µ when the source activity I = 0 or the source distance d = ∞.
Thus µ0 represents the mean value of the background.

By plotting the measured data and performing a linear fit, we estimate the mean value
of the background radiation as µ0 ≈ 1.5. No unit is specified here for µ0, as we are
considering the normalised dose rate, which is dimensionless. Although we assumed the
data to follow the inverse square law, and used a linear fit in Figure 5(a) accordingly, from
the figure, the data do not seem to follow a straight line fit well.

To check the validity of this assumption let us assume the mean values of the data
measured at different distances from the source to obey the following rule:

µ =
I

dα
+ µ0. (14)

By taking the logarithm of both sides of Equation (14) we obtain:

log(µ− µ0) = log I − α log d. (15)

Figure 5(b) shows the plot of Equation (15), where µ0 = 0.7946 estimated from the
background data has been used. The linear fit to the data in Figure 5(b) shows that
α = −1.8 and log I = 2.9 or I = exp(2.9) ≈ 18. Therefore,

µ =
18
d1.8

+ 0.7946. (16)

Because α = −1.8, rather than −2, this result suggests that the mean values of the
measured dose rate data fall off at a rate slightly less than that predicted by the inverse
square law. We believe that this less-than-inverse square fall off is due to scattering from
the concrete walls of the laboratory. We assume the inverse square law to hold for radiation
survey data measured in open space such as in the Holsworthy trial. We intend to verify
the validity of this assumption during the next field trial planned for later this year, as the
inverse square law was a basic assumption made in developing the estimation algorithms.

Table 1: The mean value and the standard deviation of dose rate data

Data set µ
√

µ σ

1 m 17.6339 4.1993 4.2565
1.5 m 9.7951 3.1313 3.1313
2 m 6.2687 2.5037 2.4900
3 m 3.3643 1.8342 1.8081
4 m 2.2721 1.5074 1.4983
Background 0.7946 0.8914 0.8726
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Figure 5: Data fitting to dose rate data measured with the gamma-beta probe

4.2 Count rate data

A plot of the data collected in the laboratory with the Micro-R sensor is shown in
Figure 6. The normalised histograms for these data are shown in Figure 7. As in the case
of the dose rate data, here also we clearly observe that the uncertainty of data increases
with the mean value. A Gaussian function fits these data quite well.

The mean value µ,
√

µ and the standard deviation σ for each data set are listed in
Table 2. Unlike in the dose rate data, here the variance is not equal to the mean.

Table 2: Mean value and standard deviation of count rate data

Data set µ
√

µ σ

1 m 79151.303 281.338 3693.219
1.5 m 43082.790 207.564 2208.091
2 m 27020.738 164.380 1496.266
3 m 11553.149 107.486 865.810
4 m 6967.930 83.474 651.190
Background 1849.658 43.008 264.925

Let us assume that σ and µ have the following relationship:

σ = βµα. (17)

Therefore,
log(σ) = α log(µ) + log(β). (18)

By plotting log(σ) versus log(µ), as shown in Figure 8(a) and performing a linear fit,
we obtain α = 0.69 and β = exp(0.37) = 1.45. Therefore, we can model the Micro-R

9
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probe data with a Gaussian distribution whose standard deviation is related to the mean
according to the rule:

σ = 1.45µ0.69. (19)

In Figure 8(b) we plot the relationship between log(µ− µ0) and log(d) for count rate
data measured with the Micro-R probe at different distances from the source. By using a
linear fit to this data we obtain the following model for the mean values of the data as a
function of the distance from the source:

µ =
89322
d1.98

+ µ0. (20)
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Figure 8: The characterisation of Micro-R probe data

5 Probabilistic solutions

Because radioactive decay is an inherently stochastic process, it is reasonable to ap-
ply probabilistic techniques for the radiological source estimation problem. Apart from
statistical variations in radiation emanating from the source, there is also a randomly
fluctuating background radiation level that affects each measurement. The background
radiation may comprise contributions due to cosmic radiation, airborne radioactivity, ter-
restrial radiation, and natural radioactivity of constituent material of the detector itself,
other equipment and shielding. The unknown radiation source has to be localised using
measurements collected in the presence of this randomly fluctuating background radiation
level. This can be considered as a parameter estimation problem where the parameter vec-
tor

[
x0 y0 I

]T has to be estimated based on the set of measurements {zk : k = 1, . . . , N}.
In many parameter estimation problems, the measurements zk are modelled as a non-

linear function of the parameter vector x with additive noise as follows [5]:

zk = hk(x) + vk. (21)
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While this model may be appropriate for situations, such as estimating a signal con-
taminated with noise, it is somewhat different in the problem at hand. In the radiological
source estimation problem, the variance in measurements is largely due to statistical fluc-
tuations in the number of disintegrations per unit time in the source itself, rather than
due to the measurement noise. Therefore, when the above model is considered for the
radiological source estimation problem, hk(x) may be considered as the mean value of the
random parameter vector of interest and vk the contribution due to its random fluctuations
and noise.

In many estimation problems, the measurement noise vk in Equation (21)can be rea-
sonably modelled using a Gaussian density. A Gaussian noise model is mathematically
attractive and usually leads to convenient analytical solutions. Popular nonlinear filtering
techniques such as the extended Kalman filter (EKF) and the unscented Kalman filter
(UKF) are based on such modelling.

Radiation survey data typically represent samples drawn from a Poisson distribution
as was observed in the experimental data collected with the gamma probe. Since the
Gaussian extends from −∞ to +∞, it cannot truly represent the radiation survey mea-
surements, which are always non-negative. For large values of measurements, however, a
Gaussian with σ =

√
µ is almost identical to a Poisson distribution with the same mean1.

The Gaussian assumption will be more applicable for large values of hk(x) = I/r2
k, be-

cause the truncation point will be far from I
r2
k
. By approximating the Poisson distributed

measurements by the Gaussian, we are able to model the data reasonably accurately while
enjoying the mathematical convenience afforded by the use of the Gaussian distribution.

Hence, for normalised dose rate data, we propose the following model of the measure-
ment likelihood function, given the parameter vector x:

p(zk|x) = P(
zk;λk(x)

)
(22)

≈ N (
zk; λk(x), λk(x)

)
(23)

where N (z; µ, σ2) denotes a Gaussian density with mean µ and variance σ2, and

λk(x) =
I

(xk − x0)2 + (yk − y0)2
+ λb. (24)

Here λb represents the mean of the background radiation, that is, the mean of the dose-rate
measurements when I = 0 or when dk =

√
(xk − x0)2 + (yk − y0)2 is infinite2.

In practice the measurements are subjected to a detection threshold. Typically a de-
tection (measurement) is reported only if it exceeds a multiple of the background radiation
mean λb. Thus the approximation in (23) is valid for all practical purposes. For this case
we define an approximate signal-to-noise (SNR) ratio in dB as:

SNRk[dB] ≈ 10 log λk ≈ 10 log
I

d2
k

. (25)

1The Micro-R probe data had a different relationship between σ and µ. The reason for this will be
investigated

2Note that the likelihood function p(zk|x) was modelled by a truncated Gaussian density in [6].
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6 Cramer-Rao analysis

The problem is to estimate the parameter vector x using the collected measurements
{zk : k = 1, . . . , N} and assuming that the source is localised within a specified region of
interest (this information will be our prior knowledge in the Bayesian sense).

6.1 Derivation

In this section we compute the theoretically best achievable second order error per-
formance of any unbiased estimator x̂k of the parameter vector. Index k is assigned to
the parameter estimate to indicate that k measurements were used in estimation. This
estimation error lower bound, known as the Cramér-Rao bound (CRB), will be a good
indicator of observability of location and activity of the source.

The CRB, denoted by Ck, provides a lower bound on the mean-square error (MSE)
matrix Σk of any unbiased estimator x̂k. The MSE matrix is defined as:

Σk = E
{

(x̂k − x) (x̂k − x)T
}

, (26)

where E is the expectation operator. By definition the CRB is given by the inverse of the
information matrix Jk, i.e.

Σk ≥ Ck ≡ J−1
k . (27)

Here the matrix inequality indicates that Σk −Ck is a positive semi-definite matrix. In
the Bayesian framework, the information matrix Jk consists of twofold contribution: prior
information and measurement contribution.

Assuming Gaussian model in (23), the information matrix can be computed in the
Bayesian framework via the following recursive formula [7, 8]:

Jk = Jk−1 +
1

λk(x)
Hk(x)THk(x). (28)

Here Hk(x) is the Jacobian of the nonlinear measurement function λk(x) defined in (24),
that is

Hk(x) =
[

∂λk(x)
∂x0

∂λk(x)
∂y0

∂λk(x)
∂I

]
, (29)

with individual terms:

∂λk(x)
∂x0

= − 2I(x0 − xk)
[(x0 − xk)2 + (y0 − yk)2]

2 (30)

∂λk(x)
∂y0

= − 2I(y0 − yk)
[(x0 − xk)2 + (y0 − yk)2]

2 (31)

∂λk(x)
∂I

=
1

(x0 − xk)2 + (y0 − yk)2
. (32)

The recursion in (28) is initialised with J0 which corresponds to our prior information (in
the Bayesian sense) about the parameter vector. Assuming a Gaussian prior distribution
with mean x̂0 and covariance P0, we have that J0 = P−1

0 . The prior mean x̂0 and
covariance P0 may be obtained, for example, based on intelligence information. If prior
information is weak, P0 will take large values which in the limiting case yields J0 = 0.

13
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6.2 Analysis

Let us consider first a scenario where the measurements are collected uniformly along a
circular path with the source positioned in the centre of the circle. The first measurement
is taken at the angle of 45o from the source with respect to the x-axis, with observer
moving anti-clockwise. The activity of the source is fixed at I = 106, while the radius of
the circle takes values of 562.3m, 177.8m and 56.2m, which correspond to SNR values of
5dB, 15dB and 25dB, respectively. The initial covariance is diagonal:

P0 = diag
([

σ2
x σ2

y σ2
I

])
(33)

with σx = σy = 250m and σI = 5 · 105. The choice if these values in our example is
arbitrary. The values for σx and σy are chosen to reflect prior knowledge that the source
is located with probability 95% within an elliptical region whose axes are approximately
2σx and 2σy. The prior information on source intensity is weak hence σI is set to a large
value. The best achievable standard deviation of the estimation error in position, defined
as

√
Ck[1, 1] + Ck[2, 2], is plotted in Figure 9(a) for the three values of SNR. Likewise,

Figure 9(b) shows the best achievable standard deviation of estimation error in activity,√
Ck[3, 3]. Observe how in both figures the error standard deviation reduces as we collect

more measurements. The importance of having a high enough SNR is also evident: after
processing all 60 measurements, at SNR=15 (versus 5dB) we can achieve the standard
deviation of positional estimation error of 5m (versus 50m). CRB analysis allows us to
quantify the best achievable estimation accuracy for different values of SNR and for a
given scenario.

7 Estimation algorithms and their performance

7.1 Algorithms

In this section we describe several estimation algorithms for estimation of parameter
vector x. Parts of this section have been reported in [9].

7.1.1 Maximum likelihood estimation

Since we deal here with parameter estimation, the first algorithm to consider is the
maximum likelihood estimator (MLE). The maximum likelihood estimator (MLE) is a
block algorithm as it operates on the accumulated set of all previous measurements. It
does not use any prior information (hence referred as non-Bayesian) but is widely used
for parameter estimation because if an asymptotically unbiased and minimum variance
estimator exists for large sample sizes, it is guaranteed to be the MLE [10]. The MLE is
determined as the vector x̂ML

N which maximises the likelihood function p(z1, . . . , zN |x).

x̂ML
N = arg max

x
p(z1, . . . , zN |x). (34)

Assuming that measurements are mutually independent, with the likelihood of each
measurement given by Equation (23), the likelihood function becomes:

14
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Figure 9: CRB analysis: the error standard deviation in (a) position and (b) activity

p(z1, . . . , zN |x) =
N∏

k=1

1√
2πλk(x)

exp

[
−1

2
(zk − λk(x))2

λk(x)

]
. (35)

By taking the logarithm of both sides of Equation (35) we obtain:

log p(z1, . . . , zN |x) =
(
−1

2

) N∑

k=1

{
log (2πλk(x)) +

(zk − λk(x))2

λk(x)

}
. (36)

Then the MLE of Equation (34) becomes:

x̂ML
N = arg min

x

{ N∑

k=1

(zk − λk(x))2

λk(x)
+

N∑

k=1

log(2πλk(x))
}

.

Minimisation in (34) can be performed by numerical methods [11]; our implementation
is based on MATLAB c© built-in routine fminsearch. Being a non-Bayesian estimator, the
MLE is expected to reach the Bayesian CRB (discussed in Section 6) only for large enough
sample size (large N) when the influence of prior knowledge has diminished.
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7.1.2 Least squares (LS) with reduced search dimension

The least squares (LS) method is another commonly used estimation procedure. If zk

is the kth measurement and hk(x) its prediction, the LS estimate x̂LS
N is defined as:

x̂LS
N = arg min

x

N∑

k=1

(zk − hk(x))2 . (37)

Equation (37) does not make any assumptions about the measurement errors [5]. If
these errors are independent and identically distributed zero-mean Gaussian random vari-
ables, then the LS estimate coincides with the ML estimate.

Typically, one may directly minimise the sum of squared errors by searching in the
three dimensional space spanned by (x0, y0, I), for example using the fminsearch routine.
We consider an alternative approach developed by Takumi et al.[12] in which the search
is carried out in only the two dimensional (x0, y0) space.

Let f denote the sum of the squared error terms.

f(x0, y0, I) =
N∑

k=1

(
zk − I

r2
k

)2

(38)

where rk =
√

(xk − x0)2 + (yk − y0)2 is the radial distance from the measurement point
to the putative radiation source. At the optimal value of (x0, y0, I) that minimises the
estimation error f ,

∂f

∂I
= 0. (39)

From this equation, the optimal value of I can be obtained as a function of (x0, y0), i.e.

I =

∑N
k=1

zk

r2
k∑N

k=1
1
r4
k

. (40)

Equation (40) can be used to compute the value of I at all possible (x0, y0) coordinates
within an area where the unknown source is assumed to be located. By substituting the
computed I in (38), the estimation error is computed at each point. The (x0, y0) value
pair corresponding to the minimum value of f is chosen as the most likely source location
within the search space. Because this approach reduces the search space dimension from
3D to 2D, the minimum can be obtained relatively rapidly. The search may be carried
out in more than one stage, where a large area is first searched at a coarse resolution to
find the most likely subarea, which will then be searched using a finer resolution search.
Instead of simply accepting the minimum solution returned by the algorithm, it may be
informative to look at a plot of the squared error surface, which could show other likely
source positions. A good example is when data is collected along a linear trajectory. While
the algorithm may return the location corresponding to the minimum error, a plot of the
error surface may show that an image solution also exists.

Since this is a nonlinear LS estimation problem where according to Equations (23) and
(24), additive noise has a non-constant variance, a theoretical prediction of the estimation
accuracy would be very difficult to derive.
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7.1.3 An approximate recursive LS algorithm

Although the least squares approach is capable of localising the source accurately, being
a batch algorithm, it is unattractive for real-time operational use. A batch algorithm re-
quires increasing amounts of memory and processing time as the number of measurements
is increased. A recursive algorithm, in contrast, requires essentially the same amount of
processing time and memory for each new measurement irrespective of the total number
of measurements and is attractive for real-time applications. While a recursive solution
is straightforward and widely used in linear least squares problems, it is not the case for
non-linear least squares problems. Some possible approaches to derive recursive non-linear
least squares solutions are described in the literature [13, 14, 15].

While we intend to investigate these approaches in future and apply them to the
radiation source estimation problem, here we describe a simple inexact recursive least
squares solution that we developed for initial experimentation. Although it is only an
approximate solution, it was able to provide reasonably accurate source estimates when
applied to the set of real measurements currently available to us. These results will be
presented in Subsection 8.5. To derive this approximate recursive solution, we rewrite
Equation (40) as follows:

IN =

∑N
k=1

zk

r2
k∑N

k=1
1
r4
k

=
NN

DN
(41)

where IN is the I estimate after observing the Nth observation, zN , and NN and DN are
the numerator and the denominator of Equation (41). Therefore, the estimate of I after
the (N + 1)th observation can be expressed as:

IN+1 =
NN+1

DN+1
(42)

where:
NN+1 = NN +

zN+1

R2
N+1

(43)

DN+1 = DN +
1

R4
N+1

. (44)

Unfortunately, Equation (38) cannot be transformed into a recursive form. Therefore,
we tried the following recursive form, which, while not exactly equivalent to Equation (38),
tries to approximate it to a limited extent:

fN+1 = fN +

(
zN+1 − IN+1

R2
N+1

)2

. (45)

The source estimates after observing the (N+1)th measurement are computed by searching
for the minimum of fN+1. Rigourous approaches to recursive nonlinear least squares will
be investigated in future work.
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7.1.4 EKF and UKF

The radiological source localisation problem can be formulated within the Bayesian
filtering framework [8]. Since the parameter vector is fixed, the state dynamic equation is
trivial. The measurement equation (Eqn 23) is highly nonlinear and, therefore, we need
to consider a nonlinear filtering solution.

The goal of filtering (the sequential Bayesian estimation) is to determine the posterior
pdf p(x|z1, . . . , zk), for k = 1, 2, . . . . Both the extended Kalman filter (EKF) [5] and the
unscented Kalman filter (UKF) [16] approximate this posterior pdf by a Gaussian density
N (xk|k,Pk|k). The mean and covariance of this Gaussian pdf are computed recursively:
in the case of the EKF via the local linearisation of the measurement function hk(x); in
the case of the UKF via an approximation of the posterior pdf by a set of deterministically
chosen sample (or sigma) points.

Both EKF and UKF are based on approximations and hence suboptimal and prone to
divergences (as we will see in Sec.7.2). However, the UKF is a more accurate algorithm
since it captures the mean and covariance of the underlying posterior pdf exactly up to
the second order of nonlinearity. Both EKF and UKF implementations contain a small
and equal amount of process noise.

7.1.5 EKF equations

x̂k|k−1 = fk−1(x̂k−1|k−1) (46)

Pk|k−1 = Qk−1 + F̂k−1Pk−1|k−1F̂
T
k−1 (47)

are the state prediction and state prediction covariance based on measurements up to the
(k − 1)th measurement. The notation k|k − 1 denotes the prediction of the kth estimate
after observing up to the (k − 1)th measurement. The updated estimate after observing
the kth measurement is denoted by k|k. Qk−1 is the covariance of process noise.

x̂k|k = x̂k|k−1 + Kk(zk − λk(x̂k|k−1)) (48)

Pk|k = Pk|k−1 −KkSkKT
k (49)

are the updated state and state covariance after receiving the kth measurement zk.

Sk = ĤkPk|k−1Ĥ
T
k + Rk (50)

is the innovation covariance, where the innovation is defined as:

νk = zk − λk(x̂k|k−1) (51)

and
Kk = Pk|k−1Ĥ

T
k S−1

k (52)

is the filter gain or the Kalman gain. Rk is the covariance of measurement noise. F̂k−1 and
Ĥk are the local liberalisations of nonlinear functions fk−1(x) and λk(x), respectively[8].
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Because we are trying to estimate the position and the strength of a static source, the
state transition equation is simply:

xk = xk−1. (53)

∴ fk−1(xk−1) = xk−1. (54)

and

F̂k−1 =
[∇xk−1

fT
k−1(xk−1)

]T |xk−1=x̂k−1|k−1
(55)

=







∂
∂x0
∂

∂y0
∂
∂I




[
x0 y0 I

]



T

|xk−1=x̂k−1|k−1
(56)

= I. (57)

Using the measurement equation (Eqn (24)) in

Ĥk = [∇xk
λT

k (xk)]T |xk=x̂k|k−1
(58)

we get:

Ĥk =







∂
∂x0
∂

∂y0
∂
∂I




[
I

(x−x0)2+(y−y0)2
+ λb

]



T

|xk=x̂k|k−1
(59)

=
[

2I(x−x0)

[(x−x0)2+(y−y0)2]2
2I(y−y0)

[(x−x0)2+(y−y0)2]2
1

(x−x0)2+(y−y0)2

]
|xk=x̂k|k−1

. (60)

7.1.6 UKF equations

In the case of the UKF, the posterior density at time k− 1 is assumed to be Gaussian
and this density is represented by a set of M sample points χi

k−1 and corresponding weights
W i

k−1, which can be computed according to the unscented transform [8].

Then the predicted state and the state prediction covariance are given by:

x̂k|k−1 =
M−1∑

i=0

W i
k−1 · fk−1(χi

k−1) (61)

Pk|k−1 = Qk−1 +
M−1∑

i=0

W i
k−1

[
fk−1(χi

k−1)− x̂k|k−1

] [
fk−1(χi

k−1)− x̂k|k−1

]T
. (62)

The predicted measurement is computed as:

ẑk|k−1 =
M−1∑

i=0

W i
k−1λk(χi

k|k−1). (63)
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Upon receiving the kth measurement zk, the state and the state covariance are updated
as follows:

x̂k|k = x̂k|k−1 + Kk(zk − ẑk|k−1) (64)

Pk|k = Pk|k−1 −KkSkKT
k (65)

where
Kk = PxzS−1

k (66)

is the filter gain and
Sk = Rk + Pzz (67)

is the innovation covariance. Pxz and Pzz are computed using:

Pxz =
M−1∑

i=0

W i
k−1(χ

i
k|k−1 − x̂k|k−1)(λk(χi

k|k−1)− ẑk|k−1)
T (68)

Pzz =
M−1∑

i=0

W i
k−1(hk(χi

k|k−1)− ẑk|k−1)(λk(χi
k|k−1)− ẑk|k−1)

T . (69)

7.2 Simulation results

In order to compare the performance of proposed algorithms, we carried out 100 Monte
Carlo runs using the scenario shown in Figure 10, where the crosses indicate the locations
where the measurements are taken, and the star marks the location of the source. The
source activity is set to I = 106, so that at the closest point of approach (205m away from
the source), the SNR is 14dB. Other parameters used in simulations are: σx = σy = 250m,
σI = 105, N = 60, λb = 0.85. The MLE, being a block algorithm, needs to be re-run every
time a new measurement becomes available, in order to show the estimation error versus
time. In addition, it is required to accumulate at least 33 measurements to run the MLE
(otherwise it becomes unstable).

Figures 11 and 12 show the standard deviation of the estimation error for source
position and activity, respectively. Analysis of the error performance results leads to the
following observations. The EKF is diverging and is considered as unsuitable for this
application. The UKF follows the trend of the CRB, but is somewhat worse than the
bound. The MLE is indeed an asymptotically efficient (unbiased and minimum variance)
estimator: its bias is approaching zero (not shown here) and its error standard deviation
is approaching the CRB as more measurements become available for estimation. Finally
we point out that the theoretical CRB is indeed a good predictor of the best achievable
error performance.

8 Application to real radiological survey data

8.1 Holsworthy field trial data

To verify the theoretical analyses we applied them to a limited amount of real radi-
ological survey data collected at Holsworthy Barracks, NSW in May 2005 during a field

20



DSTO–TR–1988

−500 0 500
−500

−400

−300

−200

−100

0

100

200

300

400

500

X coordinate [m]

Y
 c

oo
rd

in
at

e 
[m

]

SOURCE

Figure 10: The scenario used for simulation
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Figure 12: The estimation error in source activity
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trial conducted to evaluate the LCAARS system.

Two point gamma radiation sources; a 60Co source (source reference number 14)
of approximately 0.3GBq activity emitting 1.17 and 1.33 MeV gamma radiation and a
137Cs source (source reference number 23) of approximately 26.8 GBq emitting 0.662 MeV
gamma radiation were used in the field trial. One set of dose rate data and one set of
count rate data were collected with each one of the two radioactive sources emplaced. One
set of background data was also collected with each detector in the absence of the sources.
In addition to the dose rate or count rate data, GPS receiver readings of longitude and
latitude of the detector position were also recorded. Because all estimation algorithms as-
sume local Cartesian coordinates, longitude and latitude data were converted to Cartesian
coordinates using the M MAP mapping package. Unfortunately, due to some technical
problems, the GPS coordinates of the two sources had not been recorded accurately and
are known only approximately.

8.2 Deterministic solutions

The inverse distance square law-based analytical solution developed in Section 3 was
applied to the real data from the Holsworthy trial. The four-point algorithm described
therein requires as input the x and y coordinates at four arbitrary points and the radiation
survey data measured at these four positions. For the purpose of illustration, the x and y
coordinates and data at four points selected from the 137Cs count rate data set are shown
in Table 3.

Table 3: An example set of four measurements from the 137Cs count rate data used to
demonstrate source estimation using the four point estimation algorithm

x1=1946.1 y1=396.1 D1=3950
x2=2031.0 y2=627.0 D2=2820
x3=1949.6 y3=478.6 D3=8860
x4=1854.9 y4=426.8 D4=2150

Based on these four data points the algorithm estimated the source position as (2004.3,
491.2), which is in very good agreement with the true source position. In Figure 13 the
blue circles show all positions at which measurements were collected, with the diameter of
each circle indicating the relative magnitude of the corresponding measurement. The four
red squares show the four measurements described in Table 3. The green dot and the black
triangle denote the true source location and the estimated source location, respectively.

To test the reliability of the algorithm, a collection of 30 four-point groups were chosen
from the 137Cs count rate data and each group of four points was successively input to
the algorithm. The estimates of source location obtained in these trials are shown in
Figure 14. Except for one outlier ( at (4205, 229)) out of the thirty estimates, the others
are clustered closely around the true source position. It is remarkable that each estimate
is based on only four measurements. Experimentation with the data shows that estimates
may become unreliable if two or more of the four measurement points are too close to each
other which is the case in the outlier in Figure 14.
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Figure 13: An example application of the four point based deterministic source estimation
algorithm.
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The estimation algorithm used here was developed assuming the measurements to
be deterministic. Because the radioactive decay is a stochastic process rather than de-
terministic, the inverse square law is, actually, only applicable to the average values of
measurements, rather than to the individual measurements. Therefore, we can expect the
algorithm to produce more accurate and less variable source estimates if the mean values
of measurements at the sampling points are used. We cannot investigate this hypothesis
with the raw Holsworthy trial data, as only a single measurement had been collected at
most sensor locations. During the field trial planned for October 2006, we intend to collect
multiple measurements at each measurement location which would allow us to obtain the
mean value at each position.

8.3 EKF, UKF and MLE

In subsection 4.1 it was shown that the normalised dose rate data were well modelled
by a Poisson distribution. An appropriate model for measurement likelihood was proposed
in Equation 24.

In order to apply the postulated model to real data collected in the field trial we
require the mean value λb corresponding to the background data measured in situ. The
normalised background dose rate data collected with the gamma probe in the field trial
and a Poisson pdf fitted to this data are shown in Figure 15. From these data λb was
estimated to be 0.8376, which is slightly larger than the value of 0.7946 estimated from
laboratory data. The shielding provided by the concrete walls and the top floors of the
building may be the reason for the lower background level inside the laboratory.
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Figure 15: The normalised histogram for background dose rate collected at Holsworthy
army barracks and the Poisson distribution fitting

Before we applied the estimation algorithms (MLE and UKF) we have discarded all
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dose rate measurements with a normalised value lower than three. Both estimation al-
gorithms were given the same prior information: the region where the source is located
(500m × 500m) and the guessed value of source activity. For the MLE this prior in-
formation was used to initialise the fminsearch routine, while for the UKF this was the
initial value of the state vector. In addition, the elements of P0 (required for UKF) were:
σx = σy = 125m, σ2

I = 107. The results of our analysis are shown in Figure 16.
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Figure 16: Trial data analysis: Measurement locations/intensities (◦), true (∗) and
estimated (¤ and O) source locations

Blue circles in Figure 16 show the locations and intensities of measured dose-rates.
The centre of each circle indicated the location (xk, yk), while the radius of each circle
corresponds to zk. The approximate true location of the source is marked with a green ∗
symbol, the MLE and UKF estimates with a red triangle and a black square, respectively.
Because the EKF diverged and failed to return a meaningful estimate these results are
not shown here.

Figure 17 shows the actual measurements zk (circles) versus λk(x̂) (crosses), where x̂
is the MLE estimate. The latter represents the mean of p(zk|x̂), (Eqn 23). We observe a
good agreement between the measurements and their prediction based on the MLE.

8.4 LS with reduced search dimension

We applied the LS algorithm with 2D search to the available radiation survey data.
Figure 18 shows the sum squared error surface obtained for 137Cs count rate data. The
white circles show the locations where data were collected. The radius of each circle is used
as a rough indicator of the relative magnitude of the measurements. Dark blue regions
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Figure 17: Measured dose rates and λk(x) corresponding to the MLE

indicate source locations that lead to small values of sum squared error and, therefore,
highly likely to be the true source position. Dark red regions correspond to positions
that would lead to large values of sum squared error if the source were located there
and, therefore, highly unlikely to be the true source position. The white square shows the
location of the minimum error, which is chosen as the estimated source location. The green
asterisk is the location where the true source was believed to be located. The estimated
source position (2000, 510), is in good agreement with the true location, (2000, 500).

The distance from the estimated source position to each measurement point and the es-
timated source activity were used to predict the measurement values at these measurement
locations. Figure 19 compares the measured data with the predictions.

The value of I was estimated to be 4.71× 107. Using Equation (6) together with the
energy response value of 12200 for the Micro-R probe for 137Cs radiation the activity of
the source is estimated to be:

M =
(
4.71× 107 × 6

)
/ (12200× 0.662)

= 35 GBq

which is of the same order as the true source activity of 26.8 GBq.

When the LS algorithm was applied to dose rate data collected with the 137Cs source
in place, it resulted in the error surface shown in Figure 20. Although the estimated source
position (1957, 508) is about 43 m away from the true source position, the error surface
correctly recognised the true source position also as highly likely, as indicated by the dark
blue shade corresponding to very low error in this area. How the measurements predicted
using the estimated source compare with the actual measurements is shown in Figure 21.

Figure 22 shows the error surface obtained for count rate data measured with the
60Co source in place. In this case the source location estimated by the LS algorithm
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Figure 18: The squared error surface obtained for 137Cs count rate data. Measurement
points (◦) and the estimated (¤) and true (∗) source positions are also shown.
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Figure 19: Comparison of 137Cs count rate measurements and prediction based on LS
estimation
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Figure 20: The squared error surface obtained for 137Cs dose rate data. Measurement
points (◦) and the estimated (¤) and true (∗) source positions are also shown.

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7
x 10

−3

Measurement number

D
os

e 
ra

te
/ C

ou
nt

 r
at

e

Measurement vs prediction: CS137 dose rate probe    

 

 

Measured
Pred w/estimated source

Figure 21: Comparison of 137Cs dose rate measurements and prediction based on LS
estimation
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is different to the true source position. However, the dark blue region near the true
source is an indication that this area is also highly likely to have the source. Because
the measurements in this case are almost along a straight line, an image solution is, in
fact, possible due to non-uniqueness. Therefore, if this algorithm is used in an operational
situation, it may be prudent to search all areas that show low sum squared errors (dark
blue areas in the plots). The measured and predicted data are compared in Figure 23.
The error surface corresponding to dose rate data measured with the 60Co source in place
is shown in Figure 24. In this case the estimate is closer to the supposed true source
position.
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Figure 22: The squared error surface obtained for 60Co count rate data. Measurement
points (◦) and the estimated (¤) and true (∗) source positions are also shown.

Figure 26 shows the error surface obtained for background count rate data measured
in the absence of sources. The white square that denotes the estimated source location
is at the top right corner of the picture, which is over 2 km away from the measurement
location. The algorithm correctly recognised in this case that it would not be possible for
a source to be present close to the measurement points.

These results indicate the LS algorithm to be a useful tool to locate an unknown single
point gamma radiation source. It is particularly informative to look at the complete error
surface and visualise all highly likely source locations than to simply rely on the single
minimum returned by the algorithm. This fact was clearly demonstrated in some of the
results presented above. While the results of applying the LS algorithm to Holsworthy
trial data generally demonstrate its utility in locating point radiation sources, it is not
possible to provide an exact measure of the accuracy of the estimates because the true
source locations are known only approximately.
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Figure 23: Comparison of 60Co count rate measurements and prediction based on LS
estimation
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Figure 24: The squared error surface obtained for 60Co dose rate data. Measurement
points (◦) and the estimated (¤) and true (∗) source positions are also shown.
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Figure 25: Comparison of 60Co dose rate measurements and prediction based on LS
estimation

8.5 The approximate recursive LS algorithm

An inexact LS algorithm to estimate the unknown radiation source based on radiation
survey data in a recursive manner was described in Subsection 7.1.3. To check whether this
inexact recursive algorithm could produce reasonable source estimates, it was applied to
real data. Measured count rate/dose rate data were used to recursively update estimates
of x0, y0 and I and the position estimation error was computed after each update. To
compare the source estimates of the approximate recursive LS algorithm with those of the
exact batch algorithm, the latter algorithm was also run repeatedly, varying the size of
the batch from one to the full set of measurements. Plots comparing the progression of
estimates for the approximate recursive algorithm and the exact batch algorithm for the
case of 60Co count rate data are shown in Figures 27(a)-(c). The corresponding progression
of position errors for the two algorithms are compared in Figure 27(d). These plots indicate
that the estimates of the recursive algorithm match those of the batch algorithm for these
data. Similar agreement was obtained for the other data sets.

The estimates fluctuate rapidly until about the 70th measurement in the data shown,
after which the estimates stabilise to the final value. From Figure 19 we see that this
corresponds to a strong measurement peak. The early measurements are mostly low count
rate data within the background level. Furthermore, because MLE is only asymptotically
unbiased, estimates obtained with a small number of data points may be biased. The
recursive algorithm seems to produce more fluctuations than the batch algorithm, initially,
but after processing the first strong measurement peak it also converges rapidly to the
correct estimates.

The recursive algorithm is quite attractive, as it can be used in real time. In a real
operational scenario, obviously, the position error is not known. However, the plots of
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Figure 26: The squared error surface obtained for background measurements. Measure-
ment points are denoted by (◦) and the estimated source position by (¤)

estimates x0, y0 and I, similar to those in Figures 27(a)-(c) can be generated in real time.
If the estimates stop fluctuating and stabilise to some values, this may be considered as
an indication of convergence to a reliable source estimate. Once this is observed, it may
be useful to move around this estimated source position and collect further measurements
to refine the estimate. If the estimated source position were correct, moving towards this
estimated location should produce measurements that are stronger on average. Of course,
moving towards the estimated source should be done only as long as the measured count
or dose rates do not exceed any predetermined maximum safe exposure levels.

Although this recursive algorithm performed well with the limited real data available
from the Holsworthy trial, because it is an inexact algorithm, much more testing with real
data should be carried out to validate it.

9 Conclusions

Several algorithms for estimating a single radiological point source were developed and
studied using simulated and real radiological survey data.

A deterministic analytical solution based on the assumption of the inverse square law
was able to provide rough source estimates using measurements collected at just four
arbitrary points. Because the inverse square law is applicable to a radiological source only
in an average sense, this algorithm can be expected to produce more stable and accurate
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(b) The y0 estimate

20 40 60 80 100 120 140 160 180

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Measurement number

A
0 e

st
im

at
e

Progression of A
0
 estimate (Cs137 all)

 

 
Recursive
Batch

(c) The I estimate

20 40 60 80 100 120 140 160 180

500

1000

1500

2000

2500

Measurement number

P
os

iti
on

 e
st

im
at

io
n 

er
ro

r 
(m

)

Position error for Cs137 count rate data 

 

 

Recursive
Batch

(d) The position error

Figure 27: The comparison of the batch LS algorithm with the approximate recursive LS
algorithm for the case of 137Cs count rate data
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estimates if averages of multiple sensor measurements collected at each position rather
than individual readings are used as input to the algorithm.

The theoretical estimation lower bound known as the Cramer-Rao bound (CRB) was
computed to visualise the observability of the source location and the activity. The max-
imum likelihood estimate (MLE) was obtained and, using simulation, it was shown to
approach the theoretical bound predicted by the CRB analysis. When applied to real
measurement data, the MLE was in good agreement with the known truth values. Al-
though the MLE is an asymptotically optimal algorithm that approaches the theoretical
bound when the number of measurements is large, being a batch algorithm, it is less
attractive for operational use.

The unscented Kalman filter (UKF) and the extended Kalman filter (EKF) were also
studied. While the estimation error of the UKF was worse than that of the MLE, it
produced estimates that were reasonably close to the true source values. The EKF diverged
and failed to produce acceptable estimates.

A least squares approach that uses an exhaustive search in a two dimension search space
was investigated and shown to return good estimates. An inexact recursive version of this
approach was developed. While this recursive algorithm produced reasonably accurate
source estimates when applied to the limited set of real data available, its validity needs
to be verified with more real data.

The radiological source localisation problem is a complex problem. The goal of re-
search in this area is to be able to reliably estimate multiple possibly moving sources and,
ultimately, track a cloud of radioactive particles. This report described our initial work
towards understanding this difficult problem by first studying the relatively simple case of
a single fixed radiological source.

We list below some possible research directions for future work.

1. Joint detection and localisation of multiple moving point sources

Current work was based on prior knowledge that a single static point source is
active in a region of interest. In reality this may not be realistic, and we may
need to estimate both: (a) the number of point sources and (b) their location (with
possibly other attributes). The sources may also be moving. Finally, it might be
of interest to investigate the influence of the measurement location uncertainty (e.g.
GPS accuracy is about 3m) on source localisation.

2. Localisation of point sources in a non-homogeneous radiation environment

Current work assumes that the attenuation of the radiation is equal in all directions
(e.g. open space homogeneous environment). In urban environments, with buildings
and other obstacles, this will not be the case. For this situation it would be necessary
to incorporate prior knowledge of obstacles (their placement and materials that
determine their attenuation) into the localisation algorithms. A somewhat similar
but different problem is to exploit prior knowledge of “forbidden” zones for the source
location (e.g. secure areas).

3. Diffusive sources
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Current work focused on point sources only. In some situations it may be more
realistic to use a model of spatial and temporal concentration distribution of the
dispersed substance (chemical, radiological) from a diffusion source (e.g. a particle
cloud resulting from a dirty bomb explosion). The goal in this case would be to
track the centroid and the spread of the cloud over time. In the case of a chemical
spill, it may be required to localise the source of diffusion.

4. Investigation of Wireless sensor network technology for CBRN data fusion

Recent advances in wireless sensor networks (WSNs) technology have enabled de-
ployment of a large number of tiny smart sensor nodes for monitoring space and
objects. The unique aspect of WSNs is that they integrate wireless communication,
sensing and computation. It would be of interest to investigate the use of tiny CBRN
sensors (for example carried by soldiers) and their fusion for monitoring and local-
isation of CBRN hazards in a region of interest. Various aspects of this emerging
technology would need to be examined, such as the fusion architecture (centralised
vs distributed), network bandwidth and latency constraints, protocols, etc.

5. Optimisation of observer(s) trajectory

The problem is to guide the motion of (possibly multiple) observers in order to lo-
calise the source in the quickest possible manner [17]. For example, suppose that we
know that the source is inside a certain region, and we perform on-line (recursive)
source position estimation. Then intuitively it seems that the observer(s) should
move towards the currently estimated source location, in order to get more informa-
tive measurements and localise the source quicker. The observer motion should be
constrained by the safety of observer(s). Alternatively, in the WSN context, we may
want to select a subset of sensors to transmit the measurements, in order to save the
batteries (transmissions require energy and should be minimised in order to extend
the lifespan of a network).
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Appendix A Derivation of the analytical solution

Let us consider measurements {zk, k = 1, 2, 3, 4} collected at four arbitrary points (xk, yk). If
we disregard noise and background radiation, these measurements can be expressed as:

zk(x) = I/r2
k, k = 1, 2, 3, 4 (A1)

where
rk =

√
(xk − x0)2 + (yk − y0)2 (A2)

is the distance from the source (x0, y0) to the kth measurement point (xk, yk).

These four equations can be rewritten as follows:

(x1 − x0)2 + (y1 − y0)2 = I/z1 (A3)
(x2 − x0)2 + (y2 − y0)2 = I/z2 (A4)
(x3 − x0)2 + (y3 − y0)2 = I/z3 (A5)
(x4 − x0)2 + (y4 − y0)2 = I/z4. (A6)

By subtracting Eqn (A4) from Eqn(A3) we get:

(x2
1 − x2

2)− 2(x1 − x2)x0 + (y2
1 − y2

2)− 2(y1 − y2)y0 =
I

z1
− I

z2
. (A7)

Similarly, by subtracting Eqn (A5) and Eqn (A6), respectively, from Eqn (A3) we obtain:

(x2
1 − x2

3)− 2(x1 − x3)x0 + (y2
1 − y2

3)− 2(y1 − y3)y0 =
I

z1
− I

z3
. (A8)

and
(x2

1 − x2
4)− 2(x1 − x4)x0 + (y2

1 − y2
4)− 2(y1 − y4)y0 =

I

z1
− I

z4
. (A9)

By dividing Eqn (A7) by Eqn (A8), we get:

(x2
1 − x2

2)− 2(x1 − x2)x0 + (y2
1 − y2

2)− 2(y1 − y2)y0

(x2
1 − x2

3)− 2(x1 − x3)x0 + (y2
1 − y2

3)− 2(y1 − y3)y0
=

I
z1
− I

z2
I
z1
− I

z3

. (A10)

Similarly, the division of Eqn (A7) by Eqn (A9) gives:

(x2
1 − x2

2)− 2(x1 − x2)x0 + (y2
1 − y2

2)− 2(y1 − y2)y0

(x2
1 − x2

4)− 2(x1 − x4)x0 + (y2
1 − y2

4)− 2(y1 − y4)y0
=

I
z1
− I

z2
I
z1
− I

z4

. (A11)

Next, we define the following variables:

K1 =

(
1
z1
− 1

z2

)
(

1
z1
− 1

z3

)

K2 =

(
1
z1
− 1

z2

)
(

1
z1
− 1

z4

)

L1 = (x2
1 − x2

2) + (y2
1 − y2

2)
L2 = (x2

1 − x2
3) + (y2

1 − y2
3)

L3 = (x2
1 − x2

4) + (y2
1 − y2

4).
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By plugging in these factors in Eqn (A10) and Eqn (A11) and rearranging, we obtain:

a1x0 + b1y0 + c1 = 0 (A12)

a2x0 + b2y0 + c2 = 0 (A13)

where

a1 = 2K1(x1 − x3)− 2(x1 − x2)
b1 = 2K1(y1 − y3)− 2(y1 − y2)
c1 = L1 −K1L2

a2 = 2K2(x1 − x4)− 2(x1 − x2)
b2 = 2K2(y1 − y4)− 2(y1 − y2)
c2 = L1 −K2L3.

By solving Eqn (A12) and Eqn (A13) simultaneously, we find x0 and y0 as:

x0 =
b1c2 − c1b2

a1b2 − b1a2
(A14)

y0 =
a1c2 − c1a2

b1a2 − a1b2
. (A15)

By inserting the values of x0 and y0 in Eqn (A3), we compute the source activity I as:

I = z1

[
(x1 − x0)2 + (y1 − y0)2

]
. (A16)
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